

Fig. 2. Projection down [001] of the tetrahedral NH_{4}^{+}and ReO_{4}^{-} ions at $z=0$ and $z=\frac{1}{4}$. The dashed line $P Q$ indicates the interatomic distance discussed in the text. (N is at $x=\frac{1}{2}$, Re is at $x=$ 0.$)$
repulsive force between these O atoms forces the tetrahedra further apart causing an increase in the a and b cell dimensions. In spite of the expansion in the [100] and $[010]$ directions, this closest contact between O tetrahedra nevertheless decreases from 3.243 to $3 \cdot 107$ \AA. The NH_{4}^{+}ion is considerably distorted from the ideal tetrahedral configuration, being flattened along \mathbf{c}.

The observed NMR results can be explained satisfactorily by using the atomic parameters determined in this study and are discussed elsewhere (Reynhardt \& Kruger, 1977).

References

Boguslavski, A. A., Lotfullin, R. Sh., Magera, R. V. \& Pechenov, V. V. (1975). Sov. Phys. Solid State, 16, 1602-1603.
Brown, R. J. C. \& Segel, S. L. (1977). Private communication.
Brown, R. J. C., Smeltzer, J. G. \& Heyding, R. D. (1976). J. Magn. Reson. 24, 269-274.

Burkert, P. K. \& Eckel, M. F. (1973). Z. Naturforsch. Teil B, 28, 379-382.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Johnson, R. A. \& Rogers, M. T. (1974). J. Magn. Reson. 15, 584-589.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Petch, H. E., Reynhardt, E. C. \& Watton, A. (1977). J. Magn. Reson. To be published.
Reynhardt, E. C. \& Kruger, G. J. (1977). J. Magn. Reson. Submitted for publication.
Wyckoff, R. W. G. (1965). Crystal Structures, Vol. 3. New York: Interscience.
XRAY system (1972). Tech. Rep. TR-192, edited by J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickinson \& S. R. Hall. Computer Science Center, Univ. of Maryland, College Park, Maryland.

A Reinvestigation of the Structure of ε-Tantalum Nitride

By A. NøRlund Christensen*
 Department of Inorganic Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark

and B. Lebech
Physics Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

(Received 17 June 1977; accepted 14 September 1977)

Abstract

TaN}, a=5.196\) (4), $c=2.911$ (2) \AA, $Z=3$, space group $P 62 \mathrm{~m}$. It was prepared by annealing tantalum nitride in nitrogen at $1450^{\circ} \mathrm{C}$ and 1.4 MPa for 70 h . The structure was determined by the powder profile refinement technique with neutron diffraction data. The coordination polyhedra are a planar regular TaN_{3} triangle and two regular three-sided TaN_{6} prisms.

Introduction. ε - TaN has the composition $\mathrm{Ta}_{1 \cdot 00} \mathrm{~N}_{1 \cdot 00}$,

[^0]within the limits of errors of X-ray and chemical analyses (Brauer \& Mohr-Rosenbaum, 1971). In contrast to this, the two other tantalum nitrides (Gatterer, Dufek, Ettmayer \& Kieffer, 1975), $\beta-\mathrm{Ta}_{2} \mathrm{~N}$ and $\delta-\mathrm{TaN}$, have broad composition ranges and are typical nonstoichiometric compounds. $\delta-\mathrm{TaN}$ has the NaCl structure (Gatterer et al., 1975), and $\beta-\mathrm{Ta}_{2} \mathrm{~N}$ a structure similar to that of $\beta-\mathrm{Nb}_{2} \mathrm{~N}$ (Conroy \& Christensen, 1977; Christensen, 1976). The structure of ε-TaN has been determined from X-ray powder patterns (Brauer \& Zapp, 1954). However, the Ta
atoms contribute 99.1% of the intensity of the X-ray powder pattern, and the small scattering contribution from the N atoms is not sufficient for a determination of the N atom positions. In a neutron powder pattern the Ta atoms contribute only $35 \cdot 1 \%$ of the intensity. Samples of ε-TaN became available during a project concerning the preparation and characterization of transition-metal carbides and nitrides, and it was decided to reinvestigate the crystal structure of ε-TaN by neutron diffraction.

Samples of tantalum nitride containing ε - TaN and β $\mathrm{Ta}_{2} \mathrm{~N}$ were prepared from powders of Ta of nominal 99.9% purity and nitrogen gas of nominal 99.99% purity (Conroy \& Christensen, 1977). The powders of tantalum nitride were placed in a container made of Ta foil and heated in a graphite crucible in pure nitrogen at $1450^{\circ} \mathrm{C}$ and 1.4 MPa for 15 h . The powder was ground in a boron carbide mortar and annealing in pure nitrogen was repeated for 70 h . A powder pattern obtained with a Guinier-de Wolff camera with $\mathrm{Cu} \mathrm{K} \mathrm{I}_{1}$ radiation $(\lambda=1.54051 \AA)$ and $\mathrm{Ge}, a=5.6576 \AA$, as an internal standard showed that the product was ε TaN without traces of β - $\mathrm{Ta}_{2} \mathrm{~N}$.

Powder patterns were measured at room temperature at the DR3 reactor at Risø with a neutron wavelength of $1.007 \AA$. The sample was housed in a 10 mm diameter V container. One diffraction pattern (A) was measured in the 2θ interval 10.0 to 42.0°, and one (B) in the 2θ interval 10.0 to 112.0°, both in steps of 0.1°.

In the refinement the scattering lengths for Ta and N were 0.691 and $0.940\left(\times 10^{-12} \mathrm{~cm}\right)$ respectively (Bacon, 1972), and the profile-analysis method was used (Rietveld, 1969).

Diagram A : The diagram had nine peaks. The first eight were resolved and the last had contributions from three reflexions. From the nine peaks, intensities for 10 reflexions were calculated (multiplicity and Lp corrections were made). A Patterson function had peaks at the positions: (I) $(0 \cdot 37,0,0)(0,0 \cdot 37,0)(0 \cdot 37,0 \cdot 37,0)$, and (II) $(0 \cdot 33,0,0 \cdot 5)(0,0 \cdot 33,0 \cdot 5) \quad(0 \cdot 33,0 \cdot 33,0 \cdot 5)$. Peaks (I) were interpreted as $\mathrm{Ta}-\mathrm{N}$ vectors and peaks (II) as $\mathrm{Ta}-\mathrm{Ta}$ vectors. This gives the two following possibilities for the structure: (1) three Ta in $(0,0,0)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right)\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{2}\right)$, and three N in $(0 \cdot 37,0,0)(0,0 \cdot 37,0)$

Table 1. Atomic coordinates and isotropic temperaturefactor parameters for ε - TaN

Standard deviations are in parentheses.					
	Site	x	v	z	$B\left(\AA^{2}\right)$
$\mathrm{Ta}(1)$	$1(a)$	0	0	0	$0.36(4)$
$\mathrm{Ta}(2)$	$2(d)$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{2}$	$0.14(3)$
N	$3(f)$	$0.3928(2)$	0	0	$0.23(1)$

Scale factor $0.0150(1), R\left(F^{2}\right) 3.58 \%, R(F) 3.70 \%$.
$(0 \cdot 63,0 \cdot 63,0)$; (2) the same positions for the Ta atoms and three half N in $(0 \cdot 37,0,0)(0,0 \cdot 37,0)(0 \cdot 37,0 \cdot 37,0)$, and three half N in $(0 \cdot 63,0,0)(0,0 \cdot 63,0)(0 \cdot 63,0 \cdot 63,0)$. Refinement of these two structures showed that model (2) could be ruled out.

Diagram B : The diagram had 12 sharp and 10 broad peaks corresponding to contributions from 88 reflexions. The structure was refined in space group $P \overline{6} 2 m$ with one Ta in $1(a)$, two Ta in $2(d)$, and three N in $3(f)$. The parameters refined were: one positional parameter for the N atom, three isotropic temperaturefactor parameters, one scale factor, three half-width parameters, a zero-point parameter, and two unit-cell parameters, a total of eleven parameters. The results of the refinements are listed in Table 1.*

Discussion. The structure of ε - TaN determined from Xray powder patterns (Brauer \& Zapp, 1954) has atoms in the point positions $1(a)$ and $2(d)$ for three Ta, and in $3(f)$ for three N atoms, all in space group $P 6 / \mathrm{mmm}$. This structure is unusual because the Ta atoms form alternating layers of centred and uncentred hexagons, and the N atoms are placed in centres of deformed octahedra. The model, however, agrees with the X-ray powder pattern, and the positions of the Ta atoms could thus be assumed to be correct. This investigation confirms the positions of the Ta atoms. The Ta atoms are closely packed with $\mathrm{Ta}(1)-\mathrm{Ta}\left(1^{\mathrm{i}}\right)=2.911$ (2), $\mathrm{Ta}(2)-\mathrm{Ta}\left(2^{\mathrm{i}}\right)=3.000(5)$, and $\mathrm{Ta}(1)-\mathrm{Ta}(2)=$ $3 \cdot 334$ (5) \AA. The packing is displayed in Fig. 1. Ta(1) is coordinated by three N atoms in a planar triangle with $\mathrm{Ta}(1)-\mathrm{N}=2.041$ (5) $\AA . \mathrm{Ta}(2)$ and $\mathrm{Ta}\left(2^{\mathrm{i}}\right)$ are coordinated by six N atoms in a three-sided prism, with $\mathrm{Ta}(2)-\mathrm{N}=2 \cdot 163$ (5) \AA. The N atoms are coordinated by five Ta atoms in a four-sided pyramid, with $\mathrm{N}-\mathrm{Ta}=$

[^1]

Fig. 1. Projection of the structure of $\varepsilon-\mathrm{TaN}$ along $[001]$. Ta atoms with $z=\frac{1}{2}$ are hatched.
4×2.163 (5) and 2.041 (5) \AA. The structure of ε-TaN described above is thus different from that arrived at previously (Brauer \& Zapp, 1954).

References

Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Brauer, G. \& Zapp, K. H. (1954). Z. Anorg. Allg. Chem. Chem. 102, 1311-1316.

Brauer, G. \& Zapp, K. H. (1954). Z. Anorg. Allg. Chem. 277, 129-139.
Christensen, A. N. (1976). Acta Chem. Scand. A30, 219224.

Conroy, L. E. \& Chrastensen, A. N. (1977). J. Solid State Chem. 20, 205-207.
Gatterer, J., Dufek, G., Ettmayer, P. \& Kieffer, R. (1975). Monatsh. Chem. 106, 1137-1147.

Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.

Cadmium Diiodate

By H. Bach
Institut für Kristallographie der Universität Köln, 5 Köln 41, Federal Republic of Germany and H. KÜppers
Mineralogisch-Petrographisches Institut der Universität Kiel, 23 Kiel, Federal Republic of Germany

(Received 14 July 1977; accepted 23 September 1977)

Abstract

Cd}\left(\mathrm{IO}_{3}\right)_{2}\), orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=$ 5.856 (1), $b=17.470$ (3), $c=5.582$ (1) $\AA, \quad Z=4$, $D_{m}=5.31, D_{x}=5.373 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by Patterson methods and refined to an R of 0.038 for 1876 independent reflexions. The coordination number of Cd is seven, the surrounding O atoms form a distorted pentagonal bipyramid, and the $\mathrm{Cd}-\mathrm{O}$ distances range between 2.262 and $2.510 \AA$. The I atoms are closely bonded to three O atoms at distances between 1.81 and $1.83 \AA$ and weakly bonded to three further O atoms at distances between 2.58 and $2.77 \AA$. Thus, a distorted octahedral coordination is achieved. The O atoms link neighbouring Cd and I atoms in a nearly planar trigonal configuration.

Introduction. Recently attention was drawn to different salts of iodic acid in view of their piezoelectric and
electrooptical applications. Single crystals of $\mathrm{Cd}\left(\mathrm{IO}_{3}\right)_{2}$ with a size of several mm in all directions were grown by Bach (1976) at a temperature of $70^{\circ} \mathrm{C}$ by evaporation of an aqueous solution containing $60 \% \mathrm{HNO}_{3}$. A small sample was ground in a Bond chamber to an approximately spherical shape of 0.140 mm diameter. Intensities were collected with an automated Stoe twocircle diffractometer STADI 2. With Mo K rt radiation 1876 independent reflexions ($h k l, l=0$ to 7) were recorded in the range $2.3^{\circ}<\theta<35 \cdot 0^{\circ}$. With respect to anomalous dispersion, $h k l$ and $\bar{h} \bar{k} l$ were averaged separately from the group of $\bar{h} k l$ and $h \bar{k} l$ reflexions. The 46 weakest reflexions with $F_{0}<10$ were not considered. An absorption correction was applied ($\mu_{\text {мок }}=146 \cdot 1 \mathrm{~cm}^{-1}$), assuming spherical shape.

Computations were carried out with the XRAY system (Stewart, Kundell \& Baldwin, 1970). Approxi-

Table 1. Fractional atomic coordinates and thermal parameters $U_{i j}\left(\AA^{2} \times 10^{2}\right)$
Standard deviations given in parentheses refer to the last significant digits in the parameter values. The temperature factor is of the form $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cd	0.17191 (7)	0.09346 (2)	0.70714 (13)	1.14 (2)	1.18 (2)	1.28 (19)	-0.05 (1)	-0.03 (2)	$0 \cdot 11$ (2)
I(1)	0.21417 (6)	0.20870 (2)	0.25443 (11)	1.02 (2)	0.90 (2)	1.07 (18)	-0.05 (1)	0.02 (2)	-0.06 (2)
I(2)	0.63699 (6)	0.07754 (2)	0.02919 (11)	0.93 (2)	$0 \cdot 88$ (2)	1.32 (18)	0.02 (1)	-0.01 (2)	0.07 (2)
	x	y	z	U		x	y	z	U
$\mathrm{O}(1)$	0.0203 (11)	$0 \cdot 1650$ (4)	0.0417 (19)	1.81 (12)	$\mathrm{O}(4)$	$0 \cdot 8169$ (8)	0.0482 (3)	-0.2196 (15)	0.80 (9)
$\mathrm{O}(2)$	0.3694 (10)	$0 \cdot 1249$ (4)	0.3645 (16)	1.27 (10)	$\mathrm{O}(5)$	$0 \cdot 5057$ (8)	0.1613 (3)	-0.1070 (14)	0.72 (9)
$\mathrm{O}(3)$	0.0327 (10)	0.2081 (4)	0.5185 (18)	1.52 (11)	O(6)	0.3977 (8)	0.0148 (3)	-0.0456 (14)	$0 \cdot 80$ (9)

[^0]: * To whom correspondence should be addressed.

[^1]: * A list of structure factors is available from the authors and has also been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33008 (2 pp.). Copies may be obtained through The Executive Secretary. International Union of Crystallography, 13 White Friars, Chester CHI INZ. England.

